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A b s t r a c t Syndromic surveillance refers to methods relying on detection of individual and population health
indicators that are discernible before confirmed diagnoses are made. In particular, prior to the laboratory confirmation
of an infectious disease, ill persons may exhibit behavioral patterns, symptoms, signs, or laboratory findings that can be
tracked through a variety of data sources. Syndromic surveillance systems are being developed locally, regionally, and
nationally. The efforts have been largely directed at facilitating the early detection of a covert bioterrorist attack, but the
technology may also be useful for general public health, clinical medicine, quality improvement, patient safety, and
research. This report, authored by developers and methodologists involved in the design and deployment of the first
wave of syndromic surveillance systems, is intended to serve as a guide for informaticians, public health managers, and
practitioners who are currently planning deployment of such systems in their regions.
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Bioterrorism preparedness has been the subject of concen-
trated national effort1 that has intensified since the events of
fall 2001.2 In response to these events, the biomedical, public
health, defense, and intelligence communities are developing
new approaches to real-time disease surveillance in an effort
to augment existing public health surveillance systems. New
information infrastructure andmethods to support timely de-
tection and monitoring,3–7 including the discipline of syn-
dromic surveillance, are evolving rapidly. The term syndromic

surveillance refers to methods relying on detection of clinical
case features that are discernable before confirmed diagnoses
aremade. In particular, prior to the laboratory confirmation of
an infectious disease, ill persons may exhibit behavioral
patterns, symptoms, signs, or laboratory findings that can be
tracked through a variety of data sources. If the attack in-
volved anthrax, for example, a syndromic surveillance system
might detect a surge in influenza-like illness, thus, providing
an early warning and a tool for monitoring an ongoing crisis.

Affiliations of the authors: Children’s Hospital Informatics Program,
Division of Emergency Medicine, Center for Biopreparedness at
Children’s Hospital Boston, Children’s Hospital Boston, Harvard
Medical School, Boston, MA (KDM); Indiana University School of
Medicine, Regenstrief Institute, Indianapolis, IN (JMO, SG); The
Real-time Outbreak and Disease Laboratory, Center for Biomedical
Informatics, University of Pittsburgh, Pittsburgh, PA (MMW);
Department of Medical Education and Biomedical Informatics,
School of Medicine, University of Washington, Seattle, WA (WBL);
Department of Mathematics and Statistics, University of Massachu-
setts, Amherst, MA (PS); Division of Epidemiology, New York City
Department of Public Health, New York, NY (FM); Walter Reed
Army Institute of Research, Silver Spring, MD (JAP); University of
Utah and Intermountain Health Care, Salt Lake City, UT (PHG);
Bioterrorism Preparedness and Response Program, National Center
for Infectious Diseases, Centers for Disease Control and Prevention,
Atlanta, GA (TT, LH); Quest Diagnostics Incorporated, Teterboro, NJ
(EK); Palo Alto Veterans Health Care System, Palo Alto, CA, and
Stanford Medical Informatics, Stanford University, Stanford, CA
(DLB); Acute Communicable Diseases Unit, Los Angeles County
Public Health, Los Angeles, CA (RDA).

Work on the manuscript was supported in part by funding from the
National Library of Medicine (grants R01LM07677-01, 2 T15
LM07117-06, GO8 LM06625-01, and T15 LM/DE07059; contract

N01-LM-9-3536; and training grants 2 T15 LM07117-06, 01-T15/LM-
7124), the Agency for Healthcare Research and Quality (contracts
290-00-0020 and 290-00-0009), the Defense Advanced Projects
Research Agency (contract F30602-01-2-0550), the Centers for
Disease Control and Prevention (cooperative agreement number
U90/CCU318753-01), the Alfred P. Sloan Foundation (Grant 2002-12-
1), and the Canadian Institutes of Health Research. The authors
gratefully acknowledge the contributions of Drs. Daniel Pollock,
John Loonsk, and Michael D. Jones from the Centers for Disease
Control and Prevention and Michael K. Martin from the Connecticut
Hospital Association. The authors would like to thank Dasha Cohen
of the American Medical Informatics Association for facilitating the
meeting of the authors.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the United States
government or the agencies listed above.

Correspondence and reprints: Kenneth D. Mandl, MD, MPH,
Division of Emergency Medicine, Children’s Hospital Boston, 300
Longwood Avenue, Boston, MA 02115; e-mail: <kenneth_mandl@
harvard.edu>.

Received for publication: 03/05/03; accepted for publication:
09/28/03.

141Journal of the American Medical Informatics Association Volume 11 Number 2 Mar / Apr 2004



Unlike traditional systems that generally utilize voluntary
reports from providers to acquire data, contemporary
syndromic surveillance relies on an approach in which data
are continuously acquired through protocols or automated
routines. The real-time nature of these syndromic systems
makes them valuable for bioterrorism-related outbreak
detection, monitoring, and investigation. These systems
augment the capabilities of the alert frontline clinician who,
athough an invaluable resource for outbreak detection, is
generally better at recognizing individual cases rather than
patterns of cases over time and across a region. Syndromic
surveillance technology may be useful not only for bio-
terrorism event detection, but also for general public health,
clinical medicine, quality improvement, patient safety,
and research. This report, authored by developers and
methodologists involved in the design and deployment of
the first wave of syndromic surveillance systems, is intended
to serve as a guide for informaticians, public health managers,
and practitioners who may be planning deployment of such
systems in their regions.

Defining Leadership and Coalition
Participants who are necessary for establishing syndromic
surveillance in a region include the originators of surveillance
data (data providers) and a public health authority to receive
and react to the data. In many cases, sufficient regional
coverage may be achieved with data from a few large data
providers. The coalition may also include ‘‘trusted brokers’’
(nonpartisan entities that receive and store data on behalf of a
community8), academic informatics groups, or clinical in-
formation system vendors.

The leadership and governing authority for such a project do
not necessarily reside within the same entity. For example, in
the Real-time Outbreak and Disease Surveillance (RODS)9

Winter Olympic deployment in Salt Lake City, the RODS
Laboratory, located in Pittsburgh, acted as the project’s
Trusted Broker, an entity to which data providers agreed to
send data for analysis and reporting.10 The Trusted Broker
handled data storage, analysis, and reporting under the
auspices of a governing body comprised of (1) representatives
of the data providers, (2) the State Epidemiologist of Utah,
and (3) the director of the RODS laboratory. The surveillance
project was led by medical informaticians and physicians
from the Universities of Pittsburgh and Utah and repre-
sentatives from both state and local health departments in
Utah.

The experience with leadership and coalition to date can be
summarized as a set of different possible models that vary by
the scope of region, by who drives the project, and by
whether that entity has legal authority to collect data.11,12

Special Event Model
In this model, teams of public health officials ‘‘drop in’’ to
cover an event such as the 1999 World Trade Organization
meeting in Seattle, the 2002 World Series in Phoenix, or the
September 11th World Trade Center attacks.13,14 Data are
collected manually using special purpose forms from regional
hospitals for the duration of the event. The legal authority is
conferred by state or local public health statutes, which may
be enacted specifically for the event. Regional health de-
partments do much of the work with assistance often
requested from the Centers for Disease Control and

Prevention (CDC), independent contractors, and, in some
cases, the military.15 The drivers typically are local public
health officials.

Regional Model
A region could be a state, a large city, a county or group of
counties, or a small city. A population density that typically
crosses local health jurisdiction boundaries defines the
surveillance area. The technical work can be performed by
any of a number of entities. Drivers may be a coalition of
hospitals,16 health care delivery organizations, county health
departments,12 or an informatics group.

Proposed Public Health Information Network
(PHIN) Model
The geographic unit of organization is a state, comprised of
a set of local health jurisdictions, each with primary re-
sponsibility for detection, investigation, and, at least in certain
cases, management of disease outbreaks. The intended scope
of coverage is the entire nation. The legal authority is state or
local public health statutes. The state and local health
departments develop systems internally or with the aid of
contractors. CDC funding and guidance are the drivers for the
PHIN project.17,18

Military Model
The scope of coverage in this model can be a region like the
Washington, DC, National Capital area, which has a large
military presence,19 or the global military community with
data coming from installations throughout the world.20 Data
are collected under the legal authority of the military.
Although analogous to a civilian model, the military drives
the project and does the work.

Selecting the Population and the Data
Data Sources
The geographic, demographic, and temporal coverage must
be sufficient to support anomaly detection. The most valuable
data sources will be those that are electronically stored, allow
robust syndromic grouping, and are available in a timely
fashion. Additional sources of data, such as electronic
medical records that may not yet be in sufficiently wide-
spread use today, may offer expanded opportunities in the
near future. So far, practicality has dictated use of data
already collected for other purposes. Implementing new data
collection processes has a prohibitive cost, and the health care
workers have repeatedly shown poor compliance with
additional administrative tasks.21 While data for other
purposes may not be perfectly suited to the task of outbreak
detection and monitoring, using them ensures availability of
baseline data, which are valuable for algorithm development,
and reduces the effort and costs associated with introducing
new processes and software into existing workflows.

Identifying the Syndrome in the Population
Initially, the system developer must decide which diseases
need to be detected and which syndromes, therefore, should
be tracked. A data source can be chosen anywhere along the
continuum of the disease process, and the types of data that
have been used or considered are myriad. Citizenry may be
observed, be polled, or have selected aspects of their public
behavior analyzed. Behaviors of the citizenry, when their
health is affected, may leave imprints on certain data sets. The
principal underlying premise of these systems is that the first
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signs of a covert biological warfare attack will be clusters of
victims who change their behavior because they begin to
become symptomatic (Fig. 1). When people become sick, they
may make purchases such as facial tissues, orange juice, and
over-the-counter remedies for colds, asthma, allergies, in-
testinal upsets, and so on. They may not report to school or
work. Less traditional data sources include work and school
absenteeism and retail sales 22 of groceries23 and over-the-
counter medication,24 including electrolyte products for
pediatric gastroenteritis.25 The next level of detectable activity
is likely to be encounters with the health care system. Patients
may phone in to nurses or physicians. They may visit sites of
primary care,26 activate 911 emergency medical services,27

visit emergency departments,28,29 or be hospitalized. They
may have laboratory tests ordered.30 Some may die. All of
this activity may precede the first confirmed diagnosis of
a bioterrorism victim.

Acquiring and Organizing Data
Data Entry and Storage
Once the choices of population and data have been made, the
next step is to acquire and manipulate the data. Data
acquisition can be manual or automatic. Manual acquisition
requires personnel resources of some kind—to cull a log,
e-mail a report, or transfer a file, whenever data are to be
transmitted. Automated processes may result in the trans-
mission of a text report, a data file, or a series of structured
messages over an error-tolerant interface but do not require
human intervention to trigger each report. For all types of
data, those that are already electronically coded in some

format will be simpler to transfer and may provide in-
formation more rapidly.

If readily available data do not provide a clear picture of the
health status of the community being monitored, new data
can be collected from the surveillance system. Systems, in-
cluding RSVP31 and LEADERS,15 have been developed using
Web-based or handheld devices that allow providers to man-
ually enter information at the time of patient care. These
systems allow more specific and complete patient syndromic
information to be gathered and would enable better
identification of patients who have the condition of interest
but face the challenge of provider acceptability and compli-
ance. For example, when drop-in surveillance involving
manual data entry was instituted in New York City around
Ground Zero, data collection was difficult even with the
infusion of short term, dedicated personnel. Afterward, the
effort was unsustainable without outside assistance.14

Syndromic Grouping
Once the data have been identified and obtained, the next
step is to logically group them in some way that provides
useful information. While health care data sources often en-
able more fine-grained syndromic grouping (for example, re-
spiratory illness, gastrointestinal illness), other data sources,
such as school absenteeism, do not allow the assignment of
each person into a syndromic category.

Developers of the first wave of syndromic surveillance
systems have found that health care encounter data, and
particularly emergency department data, are readily avail-
able and well suited to syndromic surveillance. Real-time

F i g u r e 1. A progression of useful data sources as related to the underlying infection and associated behaviors.
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data streams from these emergency department encounters
have been established successfully in a number of regions.11

Most emergency departments record patients’ chief com-
plaints at triage, and many do so electronically. Free-text chief
complaints can be grouped into syndromes using tools such
as the University of Pittsburgh CoCo Bayesian classifier,
released as free software.32,33 All U.S. emergency de-
partments rely on the same standard for billing, the
International Classification of Diseases, 9th Edition, Clinical
Modification (ICD),34 a disease classification designed for
aggregating cases with similar diagnoses. Studies have found
that chief complaints and/or ICD codes can be used to group
emergency department encounters into syndromes.32,35–38

Since at many institutions, ICD codes are often assigned to
emergency department cases days or even weeks after an
encounter, they are not consistently useful for real-time
surveillance. However, evidence suggests that ICD codes
may more accurately classify patients into syndromes than
chief complaints,36 and further, that using ICD codes in
outbreak detection yields improved performance.39

Architects of the Electronic Surveillance System for the Early
Notification of Community-based Epidemics (ESSENCE)
system40 developed a mapping of ICD codes to syndrome
categories,20 which has been widely distributed (available at
www.geis.ha.osd.mil). The original diagnostic groupings
were determined a priori based on expert opinion. After
ESSENCE had generated sufficient baseline data, actual ICD
code usage was measured, allowing for modification of the
code set. In developing the ESSENCE code groups, use of ICD
codes during ambulatory encounters was evaluated. For
example, using the yearly influenza season as a benchmark
for the accuracy of syndromic ICD code groupings, it was
found that codes for allergic conditions, e.g., allergic rhinitis,
did not increase during influenza season but did during the
spring and fall months, so these codes were excluded from
the respiratory group. Conversely, while otitis media was not
included in the original grouping, it did strongly correlate
with the yearly outbreak and was added to the ESSENCE
respiratory group.

Before using the standard code set at a new institution,
however, it is important to be aware that there may be
substantial interinstitutional variation in billing and coding
practices. Therefore, it may be a good idea to evaluate
standardized syndromic code groupings for each new data
source and each new site. One method to accomplish this is to
perform a chart review, with clinicians using standard criteria
to assign each clinical encounter to a syndromic cate-
gory.32,35,36 Then, the sensitivity, specificity, and positive
and negative predictive values of each code grouping can be
measured using the chart review as a gold standard.

Integrating Data across Multiple Sites
If appropriate agreements have been made to share data, the
next barriers to overcome are the technical ones.

Varying Syndromic Surveillance System
Architectures
The hospital and clinical organizations that generate data use
a multitude of different information systems, some designed
internally, others from a wide variety of vendors. Further,
there are diverse syndromic surveillance implementations
and, correspondingly, a wide range of architectures. These

include Health Level 7 (HL7) interfaces (both message driven
and batch) and query-based systems (both using platform-
dependent protocols such as ODBC and open protocols such
as those based on XML). Most systems create and query
a central data repository.

Data Standards
The disparate legacy systems in data-producing facilities
typically do not use standard formats to store or transmit
data. Integration and interpretation across multiple regions
would be greatly facilitated by the universal adoption of
standards. In the meantime, it will be necessary to develop
translation engines that transform data from existing formats
to standard formats. The initial wave of systems developers,
recognizing this difficulty, limited the data they collected to
types of data that did not have this type of problem. In fact,
a survey of eight syndromic surveillance systems11 showed
a striking convergence of clinical data elements used,
including age, gender, free-text chief complaint, ICD-9 coded
discharge diagnosis, and some form of spatial location (most
often zip code).

Important standards include the Logical Observation
Identifier Names and Codes (LOINC),41 an internationally
accepted standard to identify results and observations.
Whether referring to a laboratory value (potassium, white
blood cell count), or a clinical finding (blood pressure,
electrocardiogram [EKG] pattern), unique and unambiguous
codes are available. The Unified Medical Language System
(UMLS)42 provides a cross reference among a number of
different coding systems, and a semantic structure defining
relationships among different clinical entities. The
Systematized Nomenclature of Medicine (SNOMED)43 not
only provides granular diagnostic codes but also permits
recording of component and related concepts. HL744,45 is the
health care standard messaging format, used for transmitting
information among information systems in a variety of
clinical and administrative settings.

In addition to these existing health care industry standards,
the public health community and CDC are creating standard
definitions to characterize what findings and diagnoses will
be of interest to the public health department. Laboratory test
and result codes are mapped to nationally notifiable disease
conditions. There are other standards relevant to clinical or
syndromic data collection. The CDC and eHealth Initiative
Public Private Collaboration46 have developed implemen-
tation guides for public health reporting of chief complaint
information using version 2.3.1 of HL7 Standard Protocol.
The Frontlines of Medicine47 Working Group has balloted
standards for a chief complaint coding scheme and an XML-
based triage data report and has proposed a standard for
emergency department case reports.

The PHIN18 specification includes not only format and
content standards, but also guidance on software architec-
ture, access management, and data dictionaries. The National
Committee on Vital and Health Statistics is charged with
selecting standards for use in Health Insurance Portability
and Accountability Act (HIPAA) transactions. In addition, the
Secretary of the Department of Health and Human Services
has announced adoption throughout the Federal government
of HL7, LOINC, and Digital Imaging and Communications in
Medicine (DICOM).
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Operational Challenges to Integration
Even within a single institution, grouping all pertinent
clinical, laboratory, and administrative data into a specific
health care encounter is a challenge. Patient tracking across
a regional syndromic surveillance system is a particularly
difficult task. There is no universal health identifier in the
Unites States, making it difficult to identify a patient who
moves between institutions. These patients may be double-
counted. Further, many of the data sets will be completely de-
identified or contain only aggregated frequency data, making
the tracking of an individual patient impossible.

Privacy Protection
Because outbreak surveillance requires analysis of data from
large numbers of individuals, sometimes including private
information, the confidentiality of the data must be carefully
protected. There is tension, however, between this require-
ment and the need to retain the ability to re-identify
individuals to follow-up on cases that are identified. When
reporting case-based data, even when the name and hospital
number are removed, the inclusion of identifiers such as race,
date of birth, and zip code allows the re-identification of
substantial numbers of patients.48,49 Discovering disease
through geospatial cluster recognition may require detailed
address information for geocoding.

HIPAA
The legal status of syndromic surveillance is governed in part
by state law, while the obligations and reporting re-
quirements of health care institutions are governed by the
HIPAA privacy rule. HIPAA regulations allow health care
delivery organizations to disclose data to public health
officials but do not require it. The laws that govern public
health data reporting vary widely state to state.

HIPAA defines different use cases for protected health care
data. The relevant use cases include health care operations,
research, and public health operations. Below, a number of
likely use cases are described as they apply to different health
care organizational structures. The implications for meeting
HIPAA requirements are discussed in this context.

The first scenario involves a single hospital wishing to
implement a system for internal disease surveillance. If this
system were to use only routinely collected health care data
and provide aggregate results to appropriate health care
providers for normal operational use, such as forecasting
staffing demand based on disease levels, this would constitute
a ‘‘health care operations’’ use and no institutional review
board (IRB) approval or othermodifications forHIPAAwould
be necessary.

If the disease surveillance effort is a research project that uses
patient-identifiable information, then IRB approval is re-
quired by the Federal Office for Human Research Protections.
If none of the 18 individual personal identifiers enumerated
in the HIPAA privacy rule50 are stored, data could be released
to researchers as a ‘‘limited data set,’’ and, under these
conditions, a data use agreement must be signed.

In the case of a single hospital system reporting surveillance
data to public health authorities, the HIPAA privacy
regulations permit the unencumbered transmission of such
information if it meets the criteria for public health activity.

An accounting of such disclosures may be required.50 The
HIPAA security regulations require methods of protecting the
data in transport, such as data encryption, secure sockets,
secure shell tunneling, or the use of a virtual private network.

Outbreak Detection
Whatever data are used, the goal of outbreak detection is to
distinguish an abnormal pattern from a normal one. We
explore methods for accomplishing this with temporal and
spatial data.

Control Charts
Control chart approaches, such as the cumulative sum
(CuSUM),51 rely on cumulative differences between observed
and expected data in a time window when compared with
a threshold. In traditional CuSUM, the expected data are
simply a theoretical mean, which is constant over time. A
suspicious increase in the observed data over the theoretical
mean is evidence for an emerging outbreak. To allow for
sampling variability, the threshold of the maximum differ-
ence between observed and expected values is typically some
multiple of the standard error of the sample mean. Because
many health care data sets show regular periodicities—one
example is in Figure 2, which shows the number of daily visits
of patients with respiratory syndromes at the emergency
department of Children’s Hospital Boston between June 1992
and February 2003—the theoretical mean needs to change
over time to reflect annual periodicities such as increasing
hospital visit rates in winter. The CuSUM method was
corrected for seasonal and daily variations and is im-
plemented in the CDC’s Early Aberration Reporting
Systems (EARS).52

Temporal Modeling Approaches
Other approaches involve comparing observed patterns with
those predicted by a model. This approach requires a robust
model of the baseline pattern of syndromes as well as the
selection of a threshold to signal an alarm. Threshold values

F i g u r e 2. Daily rates of emergency department visits for
respiratory syndromes as tracked by the AEGIS system at
Children’s Hospital Boston from 1992 until early 2003.
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are a multiple of the standard error of the prediction.
Typically, a value between 2 and 3.5 is chosen as the
multiplier to ensure a false alarm rate below 5%.

To establish normal patterns, at least one or more years of
historical data at the surveillance sites is required. These data
will include regular recurrences of cyclic diseases such as
influenza and local variations and trends in population
density, hospital catchment areas, and shifting referral
patterns. Typical models for temporal data are regression
type models,53 classical autoregressive integrated moving
average (ARIMA) models,54 or a combination of both
methods. Serfling’s method uses cyclic regression to model
the normal pattern of the numbers of patients susceptible to
death for pneumonia and influenza when there is not an
epidemic with the objective of determining an epidemic
threshold. Its use requires a clear definition of the disease, the
selection of data to identify a normal pattern of susceptible
patients, and the assumption that the normal pattern is
periodical. Serfling’s method has been adapted to model
hospital visitation data for influenza.55 In syndromic surveil-
lance, the goal is to identify clusters of yet undiagnosed
diseases, and the recurrent incidence of cyclic diseases should
be part of the normal pattern of diseases that underlies, for
example, the dynamics of hospital visit rates. Traditional
ARIMA models seem better suited to describe historical visit
rates and can account for temporal dependency, trends
corresponding to secular changes in the populations, and
seasonal effects.29 Because a series of consecutive alarms can
signify a real aberration rather than an unusual event,
multiday temporal filters in which a weighted prediction of
multiple days at once is compared with a threshold can lessen
the effects of the large variability of hospital visit rates and
improve both the timeliness and sensitivity of detection.56

In the Automated Epidemiologic Geotemporal Integrated
Surveillance (AEGIS) program at Children’s Hospital Boston
and Harvard Medical School, a hybrid of ARIMAwith cyclic
regression was found to have excellent predictive ability.

Another set of methods relies on Hidden Markov Models57 to
describe the normal pattern of diseases by using a hidden
state that describes the presence or absence of an epidemic of
a particular disease and amodel of the data conditional on the
epidemic status.58 Closely related to Hidden Markov Models
are change point algorithms to detect changes in a baseline
model describing the normal pattern of hospital visits.51,59 A
common feature of the methods described is that they use
aggregate data to model a normal pattern. However, these
methods may be unable to detect small changes that affect
only a specific group. The What’s Strange About Recent
Events system60 is designed to complement traditional
detection systems by looking for irregularities in the raw
data. The system searches for irregularities in the data by
using a set of rules and comparing the number of selected
cases with the same number of cases recorded the week
before.

Spatial and Spatiotemporal Modeling
Consideration of the spatial distribution of syndrome cases
may facilitate the detection of a bioterrorism attack, partic-
ularly if the cases are distributed over space in a manner that
is different from the background distribution. An initial
consideration in conducting spatial surveillance is whether to

use case point locations or counts of cases by regions. Use of
case locations is generally preferable, as aggregation of cases
to region counts tends to result in a loss of precision. At
Children’s Hospital Boston and the Harvard School of Public
Health, new methods for geospatial cluster detection rely on
the recognition of perturbations in the distribution of
pairwise distances among all individual cases in a geograph-
ical area; this approach yields substantial power for detection
and is used in the AEGIS program.61

However, there are many hurdles to overcome to use
geographic location in surveillance. For instance, the only
address that tends to be available in hospital information
systems is the home address, and exposures may occur
elsewhere. Second, there are privacy concerns when using the
exact street address for each surveillance record. Third,
considerable error occurs in the process of geocoding street
addresses.62 Finally, interpolating covariates to the case
locations is difficult. If one is using region counts for
surveillance, the first problem to be addressed is the selection
of the regions. It is well known that scale (the number of
regions for a given area) and zoning (the partitioning of
a given area into the number of regions) can both affect the
degree to which spatial processes can be detected.63

Spatial analysis can be incorporated into surveillance in
a number of ways. The most simple approach is to examine
the spatial distribution of observed cases or case counts over
a fixed time interval without respect to time. A variety of
methods are available to assess case location and region count
clustering in general,64 clustering at specific locations, 65 and
clustering in relation to putative point sources.66 While there
is not explicit consideration of time in these approaches, they
are implemented easily, and it is possible to informally
compare results across different time intervals. A more
powerful approach is to examine the joint spatial and
temporal distribution of case locations or case counts over
a fixed time interval. The method devised by Knox67 and
extended by Mantel68 enables detection of space–time in-
teraction in case locations compared with control locations.
However, both of these methods require a priori selection of
spatial and temporal distance parameters. Space–time scan
statistics69,70 avoid these assumptions and are useful to
identify ‘‘suspect clusters’’ of case locations or region counts
by using a window that moves in time and space. A desirable
approach is to sequentially examine the joint spatial and
temporal distribution of case locations or case counts over
a dynamic temporal interval.

Many of these methods are still under development or being
adapted to the context of syndromic surveillance. Some
software to accomplish some of these tasks is available
publicly , including the RODS outbreak detection software33

and the SaTScan software.71

Measuring Surveillance System Quality
Of the important characteristics of public health surveillance
systems,72 three are especially important for the evaluation of
syndromic surveillance systems: sensitivity, specificity, and
timeliness. Developers should use these metrics to under-
stand data quality and timeliness as well as more difficult
questions such as which outbreaks can be detected, how large
they must be to be detected, and how early they can be
detected.
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Data Quality
The term data quality refers to the accuracy of data and is
a generic term not limited to public health surveillance.73 The
standardmethod for characterizing data quality measures the
sensitivity and specificity with which the data can accurately
classify patients relative to a criterion determination (gold
standard). A critical design decision in such studies involves
the criterion classification. If the criterion classification is too
broad (e.g., includes cases of chronic respiratory illness),
a misleadingly high sensitivity can be reported.

Timeliness
Timeliness refers to the time when a datum of interest becomes
available relative to the time of occurrence of some reference
event, such as the time of presentation of a patient to an
emergency department. It is not always possible to measure
timeliness. For example, if the data are not personally
identifiable (i.e., over-the-counter sales of grocery products),
they cannot be linked to a reference event. In such cases,
timeliness may be calculated through aggregate measures, for
example, sales of over-the-counter cough products begin to
rise relative to when rates of emergency room visits for
influenza begin to rise. Timeliness also has been estimated by
studies of the behavior of sick individuals.74

Impact on Outbreak Detection
It is important to note that data quality does not have to be
perfect for successful detection of disease outbreaks. In fact,
the very earliest detection will likely come from statistical
analysis of noisy data—for example, over-the-counter sales of
medications—rather than from highly accurate, but late data
such as microbiology culture results. Therefore, a potential
data source should be judged by the combination of its data
quality and timeliness as well as knowledge of the cost of
false alarms versus the cost of delays in triggering true alarms
for a specific disease threat.75

The term outbreak detection performance refers to the direct
measurement of sensitivity, specificity, and timeliness of
detection of outbreaks.76 Such studies are, however, difficult
to conduct due to the low frequency or even absence (e.g.,
smallpox) of outbreaks of most diseases. There is such
difficulty in conducting direct analyses of outbreak detection
performance, that relatively few studies are available, and
those that exist typically have small sample sizes77 (e.g., one
outbreak) or simulations.55 We recommend, however, that
developers pay particular attention to the results of such
studies as they become available because they will represent
the most direct and rigorous determinations of the ability to
detect outbreaks in real time using syndromic data.

Integration of Syndromic Surveillance with Public
Health Response
If syndromic surveillance is to fulfill its goal of early outbreak
detection, it must be linked tightly and integrally to medical
care and to public health investigation and response.
Syndromic surveillance relies on nondiagnostic data andmon-
itoring of nonspecific signs and symptoms. These syndromic
‘‘signals’’ are akin to the alarming of a smoke detector. In most
cases, the smoke is caused by burning toast, but each alarm
must be investigated if fires are to be averted. In New York
City, results of syndromic analyses are examined every day
by analysts and a medical epidemiologist, and field teams are

available for investigation and response 365 days a year,
although they are rarely used.

Public Health Investigations
In conducting a public health investigation, the first task is to
differentiate natural (statistical) variability as well as
‘‘pseudo-outbreaks’’ due to data entry or coding errors from
a true increase in (infectious) illness. To some extent, ‘‘drilling
down’’ into the available data can do this, especially if there
are individual-level data available (as opposed to counts), or
if clinical information systems can be queried in real-time.
Lack of corroboration from other syndromic data sources can
also be comforting. Finally, if the observed increase is not
sustained in the next period of observation, then it is an
important clue that this may be an artifact or normal
statistical variability.

If an increase in syndromic events is thought to reflect a true
increase in illness, then the next task is to differentiate self-
limited natural illness from infectious disease outbreaks of
public health significance, including bioterrorism. Suspicion
may be increased if the profile of the cases is unusual in their
geographic distribution (spatially clustered), demographics,
or symptoms. But this investigation will require telephone
calls at a minimum and possibly on-site investigations, in-
cluding active surveillance for more severe manifestations.
Clinicians and medical examiners may need to be in-
terviewed. Another approach has been to follow-up on in-
dividuals who formed the cluster resulting in a syndromic
surveillance signal. These patients or their physicians can be
contacted and asked about any deterioration in their medical
condition, unusual manifestations of illness, or shared ex-
posures. But, ultimately, if early diagnosis of a bioterrorist
attack is realized, it will be made through obtaining
diagnostic laboratory or radiologic studies on individuals
with mild illness who otherwise would have probably not
received these studies. Communication with front-line
medical personnel and heightening their clinical ‘‘prior
probability’’ for recognizing the prodrome of a severe illness
is a necessary part of this phase of the response. A patient
with flulike symptoms who is presenting to an emergency
department that is located in an area with a suspicious
respiratory signal might be treated with more caution, not
unlike the attention given to postal workers with ‘‘flu’’ after
October 2001.

Synergies
Syndromic surveillance programs that are integrally linked to
public health response also benefit tangibly from this
relationship. The competing priorities of public health will
ensure that systems have multiple uses (monitoring regional
patterns of asthma and gastrointestinal outbreaks as well as
bioterrorism), and do not have unrealistically high rates of
false alarms. To fulfill the overarching mandate of early
detection, systems will be built to utilize data that are
available ‘‘real-time’’ 365 days per year, rather than data that
function admirably on retrospective data analysis but are not
available on weekends or holidays or are associated with a
48-hour lag.

Second, being linked to public health response allows system
developers to learn from prospective experience. If routine
signals are not investigated, there is no opportunity to
validate the data sources and algorithms in the real world
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or to improve the ability of systems to differentiate true
infectious disease clusters from false alarms.

Alarm Thresholds
Finally, alarm thresholds should be set based on explicit
utility considerations that attempt to optimize the tradeoff
between the cost of false alarms and the expected benefits of
earlier detection. In the aftermath of the anthrax mail attacks,
the Bayesian ‘‘prior probability’’ of a massive aerosolized
anthrax attack on New York City in the next 30 days was
dramatically heightened, and public health resources were
mobilized and on high alert. Operators of a detection system
in this situation might set the detection threshold lower to
achieve earlier detection at the cost of frequent investigations
of false alarms.

Next Steps
Syndromic surveillance system developers face several
challenges that can be addressed through rigorous research.
Designing ‘‘dual use’’ systems will boost sustainability. If
a surveillance system is designed to only detect bioterrorism
or very rare outbreaks, its use and funding allocation will
diminish over time if there are no events. However, if the
system is designed to help clinicians, public health officials,
and researchers automate existing data collection processes
and provide new streams of data, then it is more likely to be
maintained, improved, and used. Furthermore, it is more
likely to be up and running should a bioterrorist attack occur.

Optimal data sources for surveillance must be identified and
thoroughly assessed. Syndrome definitions that lead to high
performance outbreak detection must be developed and
assessed. Privacy-preserving data integration methods must
be developed, formalized, and implemented.

Syndromic surveillance systems can now be trained on data
sets that include naturally occurring outbreaks. Since data on
bioterrorism attacks ARE extremely limited, none of the
detection algorithms can be trained on real data sets for the
purpose of bioterrorism detection. Therefore, realistic simu-
lation is necessary, possibly requiring development of de-
tailed attack scenarios. To benchmark the performance of
detection and monitoring systems, training and validation
data containing signal and noise are required. These data can
be samples of authentic regional data, synthetic data, or
a combination of both (semisynthetic data). The global ability
of a system to detect ‘‘bioterrorism’’ cannot be assessed.
Rather, performance at detecting attacks with specific agents
under specific conditions needs to be measured. Metrics for
system performance have been proposed in the CDC draft
guidelines for evaluation of syndromic surveillance sys-
tems.76 A rigorous method for evaluation is the receiver
operating characteristic (ROC) curve. This method involves
plotting sensitivity against (1 minus the specificity) and it
allows comparisons without any assumptions about de-
tection thresholds, effectively comparing outbreak detection
performance at all operational settings simultaneously. In
addition, there is a need for detection methods that formally
integrate multiple disparate data sources over space and
time.78

Conclusion
Traditional surveillance and astute clinicians will always play
a critical role in the accurate diagnosis and treatment of

patients as well as in the identification of public health
emergencies. However, syndromic surveillance is another
modality that clearly has a role in detecting and monitoring
bioterrorism as well as other outbreaks and public health
problems. The work to be done over the coming months and
years is to build our data integration infrastructure, develop
and refine our methods, and estimate, to the best of our
ability, the promise and limits of our technology.
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